Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429306

RESUMO

In the initial hours following the application of the calcium channel blocker (CCB) nifedipine to microtissues consisting of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we observe notable variations in the drug's efficacy. Here, we investigate the possibility that these temporal changes in CCB effects are associated with adaptations in the expression of calcium ion channels in cardiomyocyte membranes. To explore this, we employ a recently developed mathematical model that delineates the regulation of calcium ion channel expression by intracellular calcium concentrations. According to the model, a decline in intracellular calcium levels below a certain target level triggers an upregulation of calcium ion channels. Such an upregulation, if instigated by a CCB, would then counteract the drug's inhibitory effect on calcium currents. We assess this hypothesis using time-dependent measurements of hiPSC-CMs dynamics and by refining an existing mathematical model of myocyte action potentials incorporating the dynamic nature of the number of calcium ion channels. The revised model forecasts that the CCB-induced reduction in intracellular calcium concentrations leads to a subsequent increase in calcium ion channel expression, thereby attenuating the drug's overall efficacy. The data and fit models suggest that dynamic changes in cardiac cells in the presence of CCBs may be explainable by induced changes in protein expression, and that this may lead to challenges in understanding calcium based drug effects on the heart unless timings of applications are carefully considered.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio , Canais de Cálcio
2.
Sci Rep ; 13(1): 16434, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777588

RESUMO

Cell-based models of excitable tissues offer the advantage of cell-level precision, which cannot be achieved using traditional homogenized electrophysiological models. However, this enhanced accuracy comes at the cost of increased computational demands, necessitating the development of efficient cell-based models. The widely-accepted bidomain model serves as the standard in computational cardiac electrophysiology, and under certain anisotropy ratio conditions, it is well known that it can be reduced to the simpler monodomain model. Recently, the Kirchhoff Network Model (KNM) was developed as a cell-based counterpart to the bidomain model. In this paper, we aim to demonstrate that KNM can be simplified using the same steps employed to derive the monodomain model from the bidomain model. We present the cell-based Simplified Kirchhoff Network Model (SKNM), which produces results closely aligned with those of KNM while requiring significantly less computational resources.


Assuntos
Eletrofisiologia Cardíaca , Modelos Cardiovasculares , Fenômenos Eletrofisiológicos , Anisotropia , Simulação por Computador , Coração/fisiologia
3.
NPJ Syst Biol Appl ; 9(1): 25, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316522

RESUMO

Mathematical models based on homogenized representation of cardiac tissue have greatly improved our understanding of cardiac electrophysiology. However, these models are too coarse to investigate the dynamics at the level of the myocytes since the cells are not present in homogenized models. Recently, fine scale models have been proposed to allow for cell-level resolution of the dynamics, but these models are too computationally expensive to be used in applications like whole heart simulations of large animals. To address this issue, we propose a model that balances computational demands and physiological accuracy. The model is founded on Kirchhoff's current law, and represents every myocyte in the tissue. This allows specific properties to be assigned to individual cardiomyocytes, and other cell types like fibroblasts can be added to the model in an accurate manner while keeping the computing efforts reasonable.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Animais , Modelos Teóricos
4.
PLoS Comput Biol ; 19(2): e1010895, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791152

RESUMO

The basic building blocks of the electrophysiology of cardiomyocytes are ion channels integrated in the cell membranes. Close to the ion channels there are very strong electrical and chemical gradients. However, these gradients extend for only a few nano-meters and are therefore commonly ignored in mathematical models. The full complexity of the dynamics is modelled by the Poisson-Nernst-Planck (PNP) equations but these equations must be solved using temporal and spatial scales of nano-seconds and nano-meters. Here we report solutions of the PNP equations in a fraction of two abuttal cells separated by a tiny extracellular space. We show that when only the potassium channels of the two cells are open, a stationary solution is reached with the well-known Debye layer close to the membranes. When the sodium channels of one of the cells are opened, a very strong and brief electrochemical wave emanates from the channels. If the extracellular space is sufficiently small and the number of sodium channels is sufficiently high, the wave extends all the way over to the neighboring cell and may therefore explain cardiac conduction even at very low levels of gap junctional coupling.


Assuntos
Canais Iônicos , Modelos Teóricos , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Canais de Potássio
5.
Sci Rep ; 12(1): 7040, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487957

RESUMO

In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Fibrilação Atrial/genética , Simulação por Computador , Humanos , Células Musculares , Mutação
6.
Front Physiol ; 12: 763584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777021

RESUMO

Computational modeling has contributed significantly to present understanding of cardiac electrophysiology including cardiac conduction, excitation-contraction coupling, and the effects and side-effects of drugs. However, the accuracy of in silico analysis of electrochemical wave dynamics in cardiac tissue is limited by the homogenization procedure (spatial averaging) intrinsic to standard continuum models of conduction. Averaged models cannot resolve the intricate dynamics in the vicinity of individual cardiomyocytes simply because the myocytes are not present in these models. Here we demonstrate how recently developed mathematical models based on representing every myocyte can significantly increase the accuracy, and thus the utility of modeling electrophysiological function and dysfunction in collections of coupled cardiomyocytes. The present gold standard of numerical simulation for cardiac electrophysiology is based on the bidomain model. In the bidomain model, the extracellular (E) space, the cell membrane (M) and the intracellular (I) space are all assumed to be present everywhere in the tissue. Consequently, it is impossible to study biophysical processes taking place close to individual myocytes. The bidomain model represents the tissue by averaging over several hundred myocytes and this inherently limits the accuracy of the model. In our alternative approach both E, M, and I are represented in the model which is therefore referred to as the EMI model. The EMI model approach allows for detailed analysis of the biophysical processes going on in functionally important spaces very close to individual myocytes, although at the cost of significantly increased CPU-requirements.

7.
PLoS Comput Biol ; 17(8): e1009233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383746

RESUMO

Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can 'repair' the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the 'composition' of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Canal de Potássio ERG1/efeitos dos fármacos , Canal de Potássio ERG1/genética , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/genética , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Antiarrítmicos/administração & dosagem , Arritmias Cardíacas/fisiopatologia , Biologia Computacional , Combinação de Medicamentos , Desenho de Fármacos , Quimioterapia Combinada/métodos , Canal de Potássio ERG1/fisiologia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação de Sentido Incorreto , Miócitos Cardíacos/fisiologia , Coelhos
8.
PLoS Comput Biol ; 17(2): e1008089, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591962

RESUMO

Short QT (SQT) syndrome is a genetic cardiac disorder characterized by an abbreviated QT interval of the patient's electrocardiogram. The syndrome is associated with increased risk of arrhythmia and sudden cardiac death and can arise from a number of ion channel mutations. Cardiomyocytes derived from induced pluripotent stem cells generated from SQT patients (SQT hiPSC-CMs) provide promising platforms for testing pharmacological treatments directly in human cardiac cells exhibiting mutations specific for the syndrome. However, a difficulty is posed by the relative immaturity of hiPSC-CMs, with the possibility that drug effects observed in SQT hiPSC-CMs could be very different from the corresponding drug effect in vivo. In this paper, we apply a multistep computational procedure for translating measured drug effects from these cells to human QT response. This process first detects drug effects on individual ion channels based on measurements of SQT hiPSC-CMs and then uses these results to estimate the drug effects on ventricular action potentials and QT intervals of adult SQT patients. We find that the procedure is able to identify IC50 values in line with measured values for the four drugs quinidine, ivabradine, ajmaline and mexiletine. In addition, the predicted effect of quinidine on the adult QT interval is in good agreement with measured effects of quinidine for adult patients. Consequently, the computational procedure appears to be a useful tool for helping predicting adult drug responses from pure in vitro measurements of patient derived cell lines.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Avaliação Pré-Clínica de Medicamentos/métodos , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Ajmalina/farmacologia , Algoritmos , Arritmias Cardíacas/genética , Linhagem Celular , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Canal de Potássio ERG1/genética , Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/genética , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Ivabradina/farmacologia , Mexiletina/farmacologia , Mutação , Quinidina/farmacologia , Pesquisa Translacional Biomédica
9.
Front Physiol ; 12: 811029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069265

RESUMO

The bidomain model is considered to be the gold standard for numerical simulation of the electrophysiology of cardiac tissue. The model provides important insights into the conduction properties of the electrochemical wave traversing the cardiac muscle in every heartbeat. However, in normal resolution, the model represents the average over a large number of cardiomyocytes, and more accurate models based on representations of all individual cells have therefore been introduced in order to gain insight into the conduction properties close to the myocytes. The more accurate model considered here is referred to as the EMI model since both the extracellular space (E), the cell membrane (M) and the intracellular space (I) are explicitly represented in the model. Here, we show that the bidomain model can be derived from the cell-based EMI model and we thus reveal the close relation between the two models, and obtain an indication of the error introduced in the approximation. Also, we present numerical simulations comparing the results of the two models and thereby highlight both similarities and differences between the models. We observe that the deviations between the solutions of the models become larger for larger cell sizes. Furthermore, we observe that the bidomain model provides solutions that are very similar to the EMI model when conductive properties of the tissue are in the normal range, but large deviations are present when the resistance between cardiomyocytes is increased.

10.
Sci Rep ; 10(1): 10537, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601303

RESUMO

Using animal cells and tissues as precise measuring devices for developing new drugs presents a long-standing challenge for the pharmaceutical industry. Despite the very significant resources that continue to be dedicated to animal testing of new compounds, only qualitative results can be obtained. This often results in both false positives and false negatives. Here, we show how the effect of drugs applied to animal ventricular myocytes can be translated, quantitatively, to estimate a number of different effects of the same drug on human cardiomyocytes. We illustrate and validate our methodology by translating, from animal to human, the effect of dofetilide applied to dog cardiomyocytes, the effect of E-4031 applied to zebrafish cardiomyocytes, and, finally, the effect of sotalol applied to rabbit cardiomyocytes. In all cases, the accuracy of our quantitative estimates are demonstrated. Our computations reveal that, in principle, electrophysiological data from testing using animal ventricular myocytes, can give precise, quantitative estimates of the effect of new compounds on human cardiomyocytes.


Assuntos
Antiarrítmicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas/farmacologia , Sotalol/farmacologia , Sulfonamidas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cães , Ventrículos do Coração/citologia , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Coelhos , Pesquisa Translacional Biomédica
11.
Front Pharmacol ; 11: 569489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628168

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) offer a new means to study and understand the human cardiac action potential, and can give key insight into how compounds may interact with important molecular pathways to destabilize the electrical function of the heart. Important features of the action potential can be readily measured using standard experimental techniques, such as the use of voltage sensitive dyes and fluorescent genetic reporters to estimate transmembrane potentials and cytosolic calcium concentrations. Using previously introduced computational procedures, such measurements can be used to estimate the current density of major ion channels present in hiPSC-CMs, and how compounds may alter their behavior. However, due to the limitations of optical recordings, resolving the sodium current remains difficult from these data. Here we show that if these optical measurements are complemented with observations of the extracellular potential using multi electrode arrays (MEAs), we can accurately estimate the current density of the sodium channels. This inversion of the sodium current relies on observation of the conduction velocity which turns out to be straightforwardly computed using measurements of extracellular waves across the electrodes. The combined data including the membrane potential, the cytosolic calcium concentration and the extracellular potential further opens up for the possibility of accurately estimating the effect of novel drugs applied to hiPSC-CMs.

12.
Chaos ; 29(7): 073102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370420

RESUMO

Mathematical models describing the dynamics of the cardiac action potential are of great value for understanding how changes to the system can disrupt the normal electrical activity of cells and tissue in the heart. However, to represent specific data, these models must be parameterized, and adjustment of the maximum conductances of the individual contributing ionic currents is a commonly used method. Here, we present a method for investigating the uniqueness of such resulting parameterizations. Our key question is: Can the maximum conductances of a model be changed without giving any appreciable changes in the action potential? If so, the model parameters are not unique and this poses a major problem in using the models to identify changes in parameters from data, for instance, to evaluate potential drug effects. We propose a method for evaluating this uniqueness, founded on the singular value decomposition of a matrix consisting of the individual ionic currents. Small singular values of this matrix signify lack of parameter uniqueness and we show that the conclusion from linear analysis of the matrix carries over to provide insight into the uniqueness of the parameters in the nonlinear case. Using numerical experiments, we quantify the identifiability of the maximum conductances of well-known models of the cardiac action potential. Furthermore, we show how the identifiability depends on the time step used in the observation of the currents, how the application of drugs may change identifiability, and, finally, how the stimulation protocol can be used to improve the identifiability of a model.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Coração/fisiologia , Modelos Cardiovasculares , Humanos
13.
PLoS Comput Biol ; 15(5): e1007042, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150383

RESUMO

The conduction of electrical signals through cardiac tissue is essential for maintaining the function of the heart, and conduction abnormalities are known to potentially lead to life-threatening arrhythmias. The properties of cardiac conduction have therefore been the topic of intense study for decades, but a number of questions related to the mechanisms of conduction still remain unresolved. In this paper, we demonstrate how the so-called EMI model may be used to study some of these open questions. In the EMI model, the extracellular space, the cell membrane, the intracellular space and the cell connections are all represented as separate parts of the computational domain, and the model therefore allows for study of local properties that are hard to represent in the classical homogenized bidomain or monodomain models commonly used to study cardiac conduction. We conclude that a non-uniform sodium channel distribution increases the conduction velocity and decreases the time delays over gap junctions of reduced coupling in the EMI model simulations. We also present a theoretical optimal cell length with respect to conduction velocity and consider the possibility of ephaptic coupling (i.e. cell-to-cell coupling through the extracellular potential) acting as an alternative or supporting mechanism to gap junction coupling. We conclude that for a non-uniform distribution of sodium channels and a sufficiently small intercellular distance, ephaptic coupling can influence the dynamics of the sodium channels and potentially provide cell-to-cell coupling when the gap junction connection is absent.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Animais , Arritmias Cardíacas/fisiopatologia , Membrana Celular/fisiologia , Biologia Computacional , Simulação por Computador , Fenômenos Eletrofisiológicos , Espaço Extracelular/fisiologia , Junções Comunicantes/fisiologia , Humanos , Espaço Intracelular/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Sódio/fisiologia
14.
J Neural Eng ; 16(2): 026030, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703758

RESUMO

OBJECTIVE: Mechanistic modeling of neurons is an essential component of computational neuroscience that enables scientists to simulate, explain, and explore neural activity. The conventional approach to simulation of extracellular neural recordings first computes transmembrane currents using the cable equation and then sums their contribution to model the extracellular potential. This two-step approach relies on the assumption that the extracellular space is an infinite and homogeneous conductive medium, while measurements are performed using neural probes. The main purpose of this paper is to assess to what extent the presence of the neural probes of varying shape and size impacts the extracellular field and how to correct for them. APPROACH: We apply a detailed modeling framework allowing explicit representation of the neuron and the probe to study the effect of the probes and thereby estimate the effect of ignoring it. We use meshes with simplified neurons and different types of probe and compare the extracellular action potentials with and without the probe in the extracellular space. We then compare various solutions to account for the probes' presence and introduce an efficient probe correction method to include the probe effect in modeling of extracellular potentials. MAIN RESULTS: Our computations show that microwires hardly influence the extracellular electric field and their effect can therefore be ignored. In contrast, multi-electrode arrays (MEAs) significantly affect the extracellular field by magnifying the recorded potential. While MEAs behave similarly to infinite insulated planes, we find that their effect strongly depends on the neuron-probe alignment and probe orientation. SIGNIFICANCE: Ignoring the probe effect might be deleterious in some applications, such as neural localization and parameterization of neural models from extracellular recordings. Moreover, the presence of the probe can improve the interpretation of extracellular recordings, by providing a more accurate estimation of the extracellular potential generated by neuronal models.


Assuntos
Potenciais de Ação/fisiologia , Espaço Extracelular/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Eletrodos , Humanos
15.
Front Pharmacol ; 10: 1648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116671

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) hold great potential for drug screening applications. However, their usefulness is limited by the relative immaturity of the cells' electrophysiological properties as compared to native cardiomyocytes in the adult human heart. In this work, we extend and improve on methodology to address this limitation, building on previously introduced computational procedures which predict drug effects for adult cells based on changes in optical measurements of action potentials and Ca2+ transients made in stem cell derived cardiac microtissues. This methodology quantifies ion channel changes through the inversion of data into a mathematical model, and maps this response to an adult phenotype through the assumption of functional invariance of fundamental intracellular and membrane channels during maturation. Here, we utilize an updated action potential model to represent both hiPSC-CMs and adult cardiomyocytes, apply an IC50-based model of dose-dependent drug effects, and introduce a continuation-based optimization algorithm for analysis of dose escalation measurements using five drugs with known effects. The improved methodology can identify drug induced changes more efficiently, and quantitate important metrics such as IC50 in line with published values. Consequently, the updated methodology is a step towards employing computational procedures to elucidate drug effects in adult cardiomyocytes for new drugs using stem cell-derived experimental tissues.

16.
Sci Rep ; 8(1): 17626, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514966

RESUMO

While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how in silico methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.


Assuntos
Antiulcerosos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cisaprida/farmacologia , Simulação por Computador , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Verapamil/farmacologia , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...